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Abstract: Phenology is a distinct marker of the impacts of climate change on ecosystems. Accordingly,
monitoring the spatiotemporal patterns of vegetation phenology is important to understand the
changing Earth system. A wide range of sensors have been used to monitor vegetation phenology,
including digital cameras with different viewing geometries mounted on various types of platforms.
Sensor perspective, view-angle, and resolution can potentially impact estimates of phenology.
We compared three different methods of remotely sensing vegetation phenology—an unoccupied aerial
vehicle (UAV)-based, downward-facing RGB camera, a below-canopy, upward-facing hemispherical
camera with blue (B), green (G), and near-infrared (NIR) bands, and a tower-based RGB PhenoCam,
positioned at an oblique angle to the canopy—to estimate spring phenological transition towards
canopy closure in a mixed-species temperate forest in central Virginia, USA. Our study had two
objectives: (1) to compare the above- and below-canopy inference of canopy greenness (using
green chromatic coordinate and normalized difference vegetation index) and canopy structural
attributes (leaf area and gap fraction) by matching below-canopy hemispherical photos with high
spatial resolution (0.03 m) UAV imagery, to find the appropriate spatial coverage and resolution
for comparison; (2) to compare how UAV, ground-based, and tower-based imagery performed in
estimating the timing of the spring phenological transition. We found that a spatial buffer of 20 m radius
for UAV imagery is most closely comparable to below-canopy imagery in this system. Sensors and
platforms agree within +/− 5 days of when canopy greenness stabilizes from the spring phenophase
into the growing season. We show that pairing UAV imagery with tower-based observation platforms
and plot-based observations for phenological studies (e.g., long-term monitoring, existing research
networks, and permanent plots) has the potential to scale plot-based forest structural measures
via UAV imagery, constrain uncertainty estimates around phenophases, and more robustly assess
site heterogeneity.
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1. Introduction

Spring phenology in temperate forests is a biological indicator of the near-term impacts of
climate change [1]—regulating photosynthesis [2]; thus, driving primary productivity and carbon
cycling. Warming trends have resulted in both an advancement in the onset of spring vegetation
activity phenophase, or leaf-out, and an extension of the growing season across the globe [3,4]. It is
necessary to quantify changes in the timing of phenophases that accompany anthropogenic climate
change in order to constrain uncertainties in modeling the Earth system [5]. Near-surface optical
remote sensing, specifically suborbital and ground-based methods, are well-suited for phenological
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observation [6], with the most commonly used sensors being RGB cameras—cameras that capture
reflectance in the red, green, and blue channels. For phenological observation, RGB cameras
can be used either above-canopy (from the air, unoccupied aerial vehicles (UAV)), below-canopy
(tripod-based or ground-based, facing upwards into the canopy), or at oblique-view angles (often
tower-based, looking across the top-of-the-canopy). Comparisons of optical sensors have shown they
are robust [7–11], but cross-platform validation of how view angle or observation perspective of the
canopy influences canopy-level phenological assessment is necessary to inform scaling. UAV based
sensors offer substantial potential to upscale plot observations to the stand or landscape level at finer
resolutions than spaceborne platforms (e.g., MODIS, Landsat), but this potential must be informed
by in situ measurements to be fully realized as remote sensing methods are best when informed
by ground-validation.

UAV-based sensors partially fill an extant gap in observational resolution and extent, while offering
substantially higher temporal resolution than can realistically be garnered with spaceborne mapping.
In phenological, as well as ecological research broadly, there are trade-offs in observational extent and
resolution, in both space and time. This becomes an optimization problem where either resolution
or extent must be prioritized. For example, spaceborne sensors that provide global coverage such
as MODIS and AVIRIS that have relatively short return intervals provide relatively high temporal
resolution on the order of 10 s of days, but do so by sacrificing spatial resolution. Conversely, small
commercial satellites (e.g., CubeSats) can provide sub-meter spatial resolution with daily return
intervals, but only over specific, highly limited spatial extents. UAV imagery can be collected over
areas on the order of hectares in just a few hours; thus, providing an advantage in spatial extent
over stationary RGB imagery [12,13]. There are trade-offs however, as UAVs do require licensed
operators and their use may be restricted by local ordinances or laws which almost universally
require UAVs to remain in “line-of-sight”. Further, UAVs may also be constrained by weather and
battery life which can limit or prevent data collection. The nadir view-angle of UAV-based sensors
(i.e., downward-facing) may introduce potential obfuscation and errors that are not associated with
the oblique angle of tower-based sensors. These limitations have not hindered the adoption of UAV
imagery for phenological study as the advantages outweigh the disadvantages [10,14], however, forested
ecosystems have thus far been comparatively underrepresented [9,15–18]. Research on tree-level
phenology in temperate [16] and tropical systems [18] illustrates the potential of UAV imagery as
a means to account for site heterogeneity and more precisely quantify the spatial distribution of
phenological timing. Multi-temporal UAV-based studies in forest systems can provide detailed insight
into the spatial drivers of phenological phenomenon and must be evaluated in a range of ecosystems.

RGB cameras are powerful phenological tools because indices of plant greenness, such as
the Green Chromatic Coordinate (GCC), a ratio of the green channel to all RGB channels, can be
derived from standard RGB imagery [19]. GCC is well correlated with canopy development, leaf-out,
and photosynthesis [20,21]. GCC is one index used widely by the PhenoCam network, a network of
over 400 cameras across North America (as of 2020), each uploading images to a server every 30 min [22].
Data from these cameras are made publicly available free of charge, as are open-source software
solutions to interpret and analyze PhenoCam data. Repeat RGB imagery, such as the PhenoCam
network [22], has the advantage of consistency and high-temporality. The images collected can readily
be compared to each other and end-users know the data are always the same areas of the canopy,
from image to image. However, PhenoCam data provide snap shots of only one area of the canopy,
which limits the assessment of site heterogeneity.

Below-canopy observation is often conducted with cameras outfitted with hemispherical lenses,
mounted on tripods, facing upwards into the canopy [23]. This method has the advantage of isolating
the canopy, which removes any interference from the ground or understory vegetation. Ground-based
methods of capturing phenology are limited by user mobility, image quality, sun angle, and sky
conditions. On clear sky days, early morning or late evening hours are preferable. Isolating the
canopy allows for the estimation of additional forest structural metrics, such as leaf area index (LAI)
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and canopy gap fraction, which are not necessarily directly inferable from all other sensors surveyed
here [24]. In addition to, or in replace of, standard RGB channels, cameras can include near-infrared
(NIR) channels, which allow the calculation of the normalized difference vegetation index (NDVI),
a common index in spaceborne remote sensing that relates the red and NIR channels in imagery to
estimate plant greenness and vitality [25,26]. For near-surface remote sensing, the blue channel can be
used in place of the red channel in calculating NDVI.

There are large differences in the spatial extents that can be efficiently measured using the
sensors we surveyed. Below-canopy cameras capture only point-measurements of limited areas of the
canopy—capturing on the order of tens to thousands of square meters of canopy area as compared
to thousands or more in the case of tower-based PhenoCams, or rather continuous UAV imagery,
which can cover on the order of hectares [9]. The additional canopy structural information provided by
below-canopy imagery could scale from the plot- to stand-scale with coincident UAV imagery. Given
the difference in spatial extent, resolution, and perspective, however, it is necessary to quantify the
resolution at which UAV imagery is most comparable to hemispherical imagery.

The purpose of this study is to assess three methods of recording vegetation phenology:
(1) a ground-based, below-canopy, upward-facing digital single-lens reflex (DSLR) camera commercially
designed for vegetation studies with B, G, and NIR channels; (2) a UAV-based, downward-facing
or nadir-view RGB camera; and (3) a tower-based, oblique-perspective, RGB camera specifically
designed for phenological study as part of the PhenoCam network. Comparisons among these sensors
are necessary in order to understand what elements of phenology are being represented from any
specific perspective, as well as how combining these measurements may provide more representative
measurements of vegetation phenology. To this end, we tested each of these approaches in a mixed,
temperate forests across the spring phenophase transition to full canopy closure in 2018 to answer the
following questions:

1. At what spatial extent are above-canopy (UAV-based imagery) remote sensing metrics most
representative of below-canopy (ground-based, hemispherical photography) vegetation metrics?

2. Do above- and below-canopy measures provide similar phenological transition dates as continuous
phenological observational data, including oblique-perspective PhenoCam data, and spaceborne,
MODIS, and Landsat data?

2. Materials and Methods

2.1. Site Description

Our study site is an unmanaged, mixed-temperate secondary forest located at the Pace Estate
(37.9229, −78.2739), a property in holding of the University of Virginia, near Palmyra, Virginia,
approximately 20 miles east of Charlottesville. The forest has an average stem density of 1813 trees ha−1,
and is populated by Acer rubrum, Quercus alba, Fagus grandifolia, Pinus virginiana, and Nyssa sylvatica
of similar composition to other mesic, temperate mid-Atlantic secondary growth forests, and has no
recorded history of management during the past century. Precipitation averages 1240 mm y−1 with a
mean annual temperature of 13.9 ◦C [27,28].

2.2. Above-Canopy, UAV-Based Measurements

We used a Mavic Pro outfitted with the stock 12.3 MP RGB camera with a 35 mm equivalent
lens with an ISO range of 100–1600 and <1.5% distortion focus (DJI, Shenzhen, China). (Figure 1).
We used DroneDeploy (DroneDeploy; San Francisco, CA, USA) to plan the flight path around the
tower with 88% of front and side overlap and a flight altitude of 100 m. The white balance of the
drone’s onboard camera was set to a fixed color temperature of 6000K. After data collection, we used
PhotoScan (Agisoft; St. Petersburg, Russia) to create orthomosaic images with spatial accuracy of
1–2 m and resolution of 0.03 m. These data were rasterized and clipped to a rectangular bounding box
around the plots of approximately 5.5 ha (37.9225, −78.276 to 37.9325, −78.275) for further analysis.
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We then derived Green Chromatic Coordinate (GCC) values from the red, green, and blue channels of
the UAV orthoimagery, with GCC calculated using the following equation [20]:

GCCUAV = DNG/(DNR + DNG + DNB) (1)

where DN represents the digital number (0 to 255) for the red (DNR), green (DNG), and blue
(DNB) channels. GCC is less sensitive to differences in canopy illumination or in differences among
cameras [20]. Orthoimage reconstruction was not fully successful for the 7 May 2018 (DOY 127)
orthoimage, resulting in the removal of approximately half of the cropped scene (including four
camera plots).
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cloud coverage. Color-based classification palettes were established for each measurement period. 

Figure 1. Hemispherical normalized difference vegetation index (NDVI) imagery taken at plot 2 for
each measurement period through the onset of the growing season. The April 26 image shows the
“sunblocker”, which is masked out of the image. Variations in light environment and sky conditions are
corrected for via the color-based pixel classification algorithm in WinSCANOPY (Regent Instruments;
Quebec, QU, Canada).

2.3. Below-Canopy Measurements

We used a 24 Megapixel Sony 6000 DSLR Compact 2571 camera (Regent Instruments;
Quebec, QC, Canada) with a 180◦ hemispherical lens with a maximum field-of-view of 90◦ to
capture hemispherical canopy imagery (Figure 1). The camera has three bands—blue, green, and NIR.
To calculate NDVI, blue is used as the absorption band and NIR is used as the reflectance band.
This differs from space-based NDIV approaches where the red channel is the absorption band since
the blue channel is more scattered due to atmospheric Rayleigh scattering. For ground-based and
UAV-based vegetation applications, the blue channel allows for superior band discrimination.

The camera was mounted on a self-leveling tripod, with the lens at 1 m from the ground,
facing-upwards, looking into the canopy. At each plot location, five images were taken during the
early morning hours (before 1000), approximately, weekly from late April until late May—at center,
and 10 m off center at cardinal directions (Figure 2). For April 26 images, we used the “sunblocker,”
a small, nylon disk supplied by the manufacturer attached to a flexible rod that is used to block the
sun from the lens—the “sunblocker” is then masked out of the image later during analysis. For the
first week of June, only images taken at plot center are available. We used image sets for analysis only
during periods where there was coincident UAV-based imagery.

We calculated leaf area index (LAI), NDVI, and gap fraction for each image using WinSCANOPY
(Regent Instruments; Quebec, QU, Canada) with a hemispherical image radius of 1925 px (total image
size is 6000 × 4000 px) using a pixel color classification algorithm in WinSCANOPY that is more
tolerant to variations in sky conditions, allowing the use of images with dark blue sky or partial-cloud
coverage. Color-based classification palettes were established for each measurement period.



Drones 2020, 4, 56 5 of 15Drones 2020, 4, x FOR PEER REVIEW 5 of 16 

 

Figure 2. At left (A,B), drone imagery showing both plot locations in within the bounding space, as 
well as the green color coordinate as measured from UAV-based imagery (GCCUAV) for both 
endmembers of the measurement period. At right (C), experimental diagram showing within plot 
locations of image acquisition using the below-canopy camera. 

2.4. Tower-Based Measurements 

For the oblique-view of the forest canopy, we used the tower-based, RGB PhenoCam camera 
mounted to the Pace Estate eddy covariance tower (Figure 3). We accessed PhenoCam data from this 
camera acquired with the phenocamr package [29] in R 3.6.2 (R Core Team) for site “pace” where we 
downloaded and analyzed 3-day time interval data following the phenocamr documentation 
suggested package workflow: (1) data expansion; (2) outlier detection; (3) smoothing; (4) phenophase 
calculation. Full details on the process are available in the phenocamr vignette that is included in the 
package. This workflow provides “rising” phenophase dates informed by PhenoCam GCC values 
(GCCPC). 
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PhenoCam provides, with the broad swath of the Pace Estate forest canopy shown; in the lower right, 
the NDVI imagery is from the ground-based, upward-facing, tripod-mounted NDVI camera that 

Figure 2. At left (A,B), drone imagery showing both plot locations in within the bounding space, as well
as the green color coordinate as measured from UAV-based imagery (GCCUAV) for both endmembers
of the measurement period. At right (C), experimental diagram showing within plot locations of image
acquisition using the below-canopy camera.

2.4. Tower-Based Measurements

For the oblique-view of the forest canopy, we used the tower-based, RGB PhenoCam camera
mounted to the Pace Estate eddy covariance tower (Figure 3). We accessed PhenoCam data from this
camera acquired with the phenocamr package [29] in R 3.6.2 (R Core Team) for site “pace” where we
downloaded and analyzed 3-day time interval data following the phenocamr documentation suggested
package workflow: (1) data expansion; (2) outlier detection; (3) smoothing; (4) phenophase calculation.
Full details on the process are available in the phenocamr vignette that is included in the package.
This workflow provides “rising” phenophase dates informed by PhenoCam GCC values (GCCPC).
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Figure 3. Different sensors, taken from different locations, show different perspectives of the canopy.
All images show 4 June 2018. In the upper left, we can see the oblique angle that the tower-based
PhenoCam provides, with the broad swath of the Pace Estate forest canopy shown; in the lower right,
the NDVI imagery is from the ground-based, upward-facing, tripod-mounted NDVI camera that looks
into the canopy from below; and in the upper right, the canopy as represented in orthoimages taken
from the nadir-view RGB camera mounted on the UAV. In the lower right, a cartoon showing the
relative perspectives that each sensor provides of the canopy.
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2.5. Satellite-Based NDVI

We incorporated two common satellite-based NDVI products into our analysis to provide a
baseline to large-scale phenological studies: MODIS and Landsat 8 [30]. For each, we extracted NDVI
from analysis-ready composite datasets available on Google Earth Engine, specifically the MOD13Q1
V6 Terra Vegetation Indices 16-Day Global 250 m product and the Landsat 8 Collection 1 Tier 1 8-Day
NDVI Composite. We compiled all available scenes for both products as a time series of means and
standard deviations of pixel values within the study extent. Statistics were computed for edge pixels
with an area-based weighting of pixel values partially within the study extent.

2.6. Statistical Analysis

To address question one, we compared UAV data to below-canopy imagery using two different
approaches. For the first, only images taken at plot center for each period were used—these data are
noted as center in all text, tables, and figures. For the second approach, we used all available images
per plot, per measurement period, averaged to make a plot level mean of NDVI, LAI, and gap fraction
(Figure 2). These are denoted as composite in all text, tables and figures. Note, this does mean that there
is no June imagery used in composite analyses. To test for the appropriate spatial extent with which to
scale plot data with coincident UAV imagery, we averaged GCCUAV at increasing distances from plot
center, starting at a 5 m buffer (i.e., distance from plot center) and increasing iteratively by 1 m, to a
maximum of 50 m. The range of 5 to 50 m radius was chosen based on assumptions of how much
canopy the hemispherical camera can see given its focal length. Standard forestry inventory plots
rarely exceed 20 m in radius, thus making this range of comparison reasonable, even when considering
that forest canopies associated with trees whose boles would be situated within a plot, will extend
up to 5 m outside of the plot boundaries [20]. This was done for each of the 8 plots, for each of the 5
measurement periods, resulting in a total of 1147 clipped raster grid cells of mean GCCUAV. Note, that
for 7 May 2018 (DOY 127), only 5 plots were used due to the orthoimage error (see Section 2.2 above).
Linear regression was used to evaluate relationships among buffer size of GCCUAV with below-canopy
measures of NDVI, LAI, and gap fraction with goodness-of-fit determined based on coefficient of
determination (R2), directionality and internal calibration from the slope, and uncertainty quantified
as residual mean standard error (RMSE). Moreover, 95% Confidence intervals were determined using
bootstrapping analysis via the boot package in R [31,32].

We used the buffer size analysis on center and composite imagery to inform upscaling of both
LAI and gap fraction from the plot to the entire UAV scene. For LAI, a 15 m buffer size was chosen to
scale GCCUAV data to LAI using a linear model:

LAI = mGCCUAV − b (2)

We chose a 20 m buffer size to scale GCCUAV to gap fraction. While we have included the iterative
linear regressions statistics for gap fraction (Figure 4g), for upscaling purposes, we chose a non-linear
model based on our analysis that better fit the data using non-linear least-squares via the nls function
in R 3.6.2.:

Gap Fraction = ae(b GCCUAV) (3)

Rasters were resampled using bilinear sampling with the rgdal [33] and raster [34] packages in R
3.6.2 [35] to the appropriate resolution—15 m for LAI and 20 m for gap fraction. This was not done for
NDVI, as GCCUAV and NDVI are already similar and the intent is to test the certainty with which LAI
and gap fraction may be inferred from UAV imagery.

To address question two, we used breakpoint analysis with the segmented package [36] in R 3.6.2
to determine how each method estimates the phenological transition, specifically canopy closure.
Breakpoint analysis, specifically segmented or piecewise regression, identifies thresholds that indicate
critical changes in the directionality or slope of a dataset. On phenological data this method will indicate
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when the canopy is no longer increasing in “greenness,” indicating stability that we interpret as canopy
closure. To evaluate how representative plot averages of GCCUAV were of the entire forest, means
of whole scenes were compared against plot level means using root mean square error. For analysis
scripts, code, and data, see Supplementary Materials.

Drones 2020, 4, x FOR PEER REVIEW 8 of 16 

 
Figure 4. Linear regression output statistics of coefficient of determination (R2), residual mean 
standard error (RMSE), and slope for NDVI (A–C), leaf area index (LAI) (D–F), and gap fraction (G–
I) from below-canopy imagery regressed against GCCUAV data where GCCUAV data at each iteration 
is averaged over an increasingly larger buffer size, starting at 5 m from center and increasing 
iteratively to 50 m in radius. Each point represents all plot-level measures of each variable against 
unoccupied aerial vehicle (UAV) with error bars indicating 95% confidence intervals. 

3.2. Estimating Canopy Closure 

Transition from spring phenophase to canopy closure based on breakpoint analysis agreed 
among local-scale sensors, but differed substantially from Landsat 8 and MODIS. GCCUAV (full scene), 
GCCUAV (20 m buffer), NDVI, gap fraction, and LAI all show canopy closure to occur around DOY 
124, with standard error that overlap among the variables, indicating no operational difference. 
GCCPhenoCam shows canopy closure to occur on DOY 131 however, nearly a week after above- and 
below-canopy sensors (Table 1; Appendix A1). MODIS shows the earliest indicated period of canopy 
closure at DOY 121, while Landsat shows both the latest day at DOY 141, as well as the greatest 
variance of over 17 days plus or minus, compared to 2 days or less for the majority of other sensors 
(Table 1.). 

Table 1. Canopy Closure data (DOY) as estimated by UAV-, ground-, and tower-based imagery. 

Metric Canopy Closure Date (DOY) Standard Error (+/−) 
GCCUAV (20 m buffer) 124.51 1.17 
GCCUAV (Full Scene) 123.91 1.05 

NDVI 125.06 1.46+ 
Gap Fraction 123.77 2.34 

LAI 125.87 1.47 
GCCPhenoCam 131.55 0.58 

Figure 4. Linear regression output statistics of coefficient of determination (R2), residual mean standard
error (RMSE), and slope for NDVI (A–C), leaf area index (LAI) (D–F), and gap fraction (G–I) from
below-canopy imagery regressed against GCCUAV data where GCCUAV data at each iteration is
averaged over an increasingly larger buffer size, starting at 5 m from center and increasing iteratively
to 50 m in radius. Each point represents all plot-level measures of each variable against unoccupied
aerial vehicle (UAV) with error bars indicating 95% confidence intervals.

3. Results

3.1. Above- and Below-Canopy Comparisons

NDVI explained a large portion of variance in GCCUAV for both center and composite below-canopy
imagery based on linear regressions with R2 values of 0.88 at 20 m for center imagery and 0.92 at
20 m for composite imagery (Figure 4a). R2 for both center and composite imagery continued to rise
with increasing buffer size, before stabilizing around 35 m. RMSE values dropped consistently with
buffer size as well, with RMSE at 20 m buffer size of 0.12 for center imagery and 0.08 for composite
imagery (Figure 4b). Regression slopes were consistently positive with increasing buffer size (Figure 4c).
While composite imagery showed increased explanatory power, confidence intervals show this effect
is small to insignificant, though confidence intervals do become more constrained after ~ 15 to 20 m
buffer sizes.
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There were only small differences in LAI between center and composite imagery, though confidence
intervals were consistently large, showing no constraint as buffer size increased. At 20 m, R2 was 0.80
for both center and composite imagery, while RMSE was 0.56 for center imagery and 0.53 for composite
imagery. Slopes for both were nearly identical and increased steadily with buffer size. Peak agreement,
based on R2, between above- and below-canopy imagery was in the 14 to 16 m buffer sizes, showing
that increasing area of above-canopy GCCUAV averaging did not add additional information as it did
in the case of NDVI. For scaling purposes, linear regression fit at 15 m buffer size was chosen for the
scaling analysis, with coefficients of a = 25.77 and b = −7.71 (Equation (3)). These data provide us with
confidence that, 15 m and 20 m, are appropriate resolutions to scale LAI and gap fraction, respectively.
A non-linear function was chosen over a linear function to scale gap fraction, with coefficients of
a = 65,354.32 and b = −21.55 for Equation (4). The non-linear function was chosen as the residual
standard error was lower (3.20 vs. 4.87 for NLS and linear, respectively).

3.2. Estimating Canopy Closure

Transition from spring phenophase to canopy closure based on breakpoint analysis agreed
among local-scale sensors, but differed substantially from Landsat 8 and MODIS. GCCUAV (full
scene), GCCUAV (20 m buffer), NDVI, gap fraction, and LAI all show canopy closure to occur around
DOY 124, with standard error that overlap among the variables, indicating no operational difference.
GCCPhenoCam shows canopy closure to occur on DOY 131 however, nearly a week after above- and
below-canopy sensors (Table 1; Appendix A1). MODIS shows the earliest indicated period of canopy
closure at DOY 121, while Landsat shows both the latest day at DOY 141, as well as the greatest
variance of over 17 days plus or minus, compared to 2 days or less for the majority of other sensors
(Table 1.).

Table 1. Canopy Closure data (DOY) as estimated by UAV-, ground-, and tower-based imagery.

Metric Canopy Closure Date (DOY) Standard Error (+/−)

GCCUAV (20 m buffer) 124.51 1.17
GCCUAV (Full Scene) 123.91 1.05

NDVI 125.06 1.46+
Gap Fraction 123.77 2.34

LAI 125.87 1.47
GCCPhenoCam 131.55 0.58

MODIS 121.49 1.15
Landsat 8 141.72 17.66

4. Discussion

Here, by comparing three similar sensors with different canopy perspectives—UAV-based RGB
imagery, tower-based PhenoCam, and ground-based, below-canopy NDVI hemispherical imagery—we
show strong, positive correlations among the rate and magnitude of canopy greening consistent across
all sensors, regardless of the perspective which they view the forest canopy. Spatial resolution
affects canopy structural variables derived from below-canopy hemispherical imagery and UAV
imagery (e.g., LAI and gap fraction), but we demonstrate that these structural attributes can still be
accurately inferred in temperate, broadleaf systems. Our analyses show that all three sensor platforms
considered here effectively approximate phenological indicators, with above- and below-canopy
methods estimating canopy closure earlier than the oblique-angle tower-based PhenoCams, but later
than MODIS derived NDVI.

4.1. Scaling Above- and Below-Canopy Imagery

We found there are optimal, but differing plot radii over which GCCUAV is averaged that best
approximates below-canopy measured NDVI and structural attributes, LAI, and gap fraction. As the
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averaging area for GCCUAV increases, the relationship between below-canopy measured NDVI and
GCCUAV strengthens as evidenced by increasing values of R2 that are accompanied by narrowing
confidence intervals (Figure 4). The statistical relationship between NDVI and GCCUAV stabilizes
around 35 m in buffer size where R2 becomes asymptotic. We also observe a marked reduction in
the size of the confidence intervals around 20 m. Composite imagery consistently outperformed
center-only imagery, though the effect appears to be small. For LAI, however, the 14 to 16 m buffer size
range resolved the most variance, followed by a decrease in R2 values at greater buffer sizes. The small
difference between center and composite imagery indicates no apparent advantage to composite
imagery over center-only imagery.

The strong agreement between GCCUAV and both LAI and gap fraction is sufficient to scale these
findings via the UAV-based metric. Similar to Keenen et al. [37], we observed non-linear relationships
between GCCUAV and gap fraction (S1) which indicates saturation of greenness at high levels of leaf
area and low levels of gap fraction. Comparing our late April to early June measurements, we see
consistent greening leading to consistent decreases in gap fraction. These relationships are strong for
this forest type, but it is unknown how a more heterogeneous forest (e.g., patchy disturbance, more
species diverse) would compare. Given our interpretation of the data, we suggest that LAI would
be more variable than gap fraction, or even NDVI/GCC, in a more heterogeneous forest than our
even-aged, predominately broadleaf temperate forest.

We also show that each sensor approximates dormant to growing season transitions to full-canopy
closure within +/− 2 days, which is in line with the MODIS estimate, though MODIS data estimates a
slightly earlier transition. However, PhenoCam estimates are 5 days later, a finding concurrent with
other work [37]. Landsat 8 provides the latest canopy closure date nearly 15 days later than other sensors,
likely due to longer return intervals and higher likelihood of less quality data due to cloud cover. While it
is out of the scope of this work, the 20 m radius buffer we show is suitable for comparison between
above- and below-canopy measures of phenology (Figure 5), and potentially structural attributes,
and within the sensor capabilities of some spaceborne remote sensing platforms such as, but not limited
to, Harmonized Landsat Sentinal-2 (10–20 m) or Planet Labs (3–5 m) satellite constellations.

NDVI and GCC have similar temporal trends, but appear to represent different aspects of canopy
structure. The periods of greatest uncertainty between GCC and NDVI typically occur during the
end of the growing season when GCC tends to decline sooner than NDVI does due to changes
in pigment concentrations [37,38]. This analysis may be particularly useful for applications where
plot-based research can be augmented by UAV data. While there are geometrical considerations
that may play a part (e.g., circular plot areas) when comparing hemispherical imagery to UAV
imagery—including how buffer size and area are calculated—the agreement we see among sensors in
this system is encouraging for linking below-canopy imagery to UAV imagery, potentially even to
satellite imagery. This is an important consideration for pairing UAV imagery with plot-based studies.
Additionally, aspects of forest structure can be captured with UAV-based structure-from-motion (SFM)
methods where overlapping imagery can be processed using photogrammatical algorithms to construct
three-dimensional (3D) point clouds of the canopy that approximate point clouds acquired by aerial
light detection and ranging (LiDAR) systems [39,40]. SFM matched with phenological measurements
can potentially clarify the role of forest stature in phenology with high resolution and spatial extent.
We also only consider RGB UAV-based imagery when there are other multispectral sensors that provide
additional spectral bands (e.g., red edge) that could offer utility in scaling plot data to the stand or
landscape. The potential for UAVs to scale plot-based research from the micro- to the mesoscale
is enormous, and this work adds even more support to a growing, robust body of research that
emphasizes these applications [12,13,41].

There are often many different methods that can be employed in order to measure a given variable
of interest. For example, in forests, leaf area is a structural parameter of biophysical importance that
can be measured many different ways including optically (hemispherical camera, surface reflectance,
light absorption), from active remote sensing (LiDAR) [42–45] or empirically [46]. These methods
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have variable results even within the same stand or plot [47] that arise due to methodological
assumptions–statistical artifacts from saturation when estimated using light absorption methods
that result in saturating values at higher ranges [48,49], or interference from parsing leaf and wood
values [50,51]. Many leaf-are measurement methods are built on estimating gap fraction, but different
assumptions within algorithms can change estimates. Depending on sensor type and perspective,
methodological assumptions can similarly impact measurements in phenological studies.Drones 2020, 4, x FOR PEER REVIEW 10 of 16 
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4.2. Temporal Resolution

Temporal resolution was directly affected by the autonomy of data collection in this study. From
highest to lowest frequency observations were terrestrial camera, UAV, satellite, and PhenoCam data.
The high temporal resolution of PhenoCams makes these data uniquely powerful for examining
long-term patterns and trends. For example, the Pace Estate tower PhenoCam was installed on
9 March 2017, and has collected 43,254 images as of 19 June 2020. Further, there are over 400 PhenoCams
collecting similarly large datasets [22]. Neither ground-based nor UAV-based approaches can reach these
temporal resolutions, largely because each sensor platform requires an operator, whereas PhenoCams
do not. Even when UAVs can be deployed at high frequencies, data volume, orthorectification,
and post-processing become major bottlenecks in the processing pipeline. Additionally, ground-based
methods, such as tripod-mounted cameras, must be physically moved from location to location during
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a sampling period, adding additional effort and time. Satellite imagery partially mitigates these issues,
but can be limited by cloud-cover—particularly in the tropics or in mountainous areas—as well as
temporal resolution, which may be solved with the development of CubeSat constellations, capturing
daily, high-resolution imagery.

4.3. Spatial Resolution

UAVs provide the greatest spatial coverage of any of the near-earth sensors we surveyed. The UAV
imagery we examined had a spatial resolution of 0.03 m and a total spatial extent of ~105 ha—which
we clipped to 5 ha for analysis. The higher resolution and greater spatial extent of UAV imagery allows
for greater consideration of spatial heterogeneity in the system over either below-canopy imagery
or PhenoCams. PhenoCams are fixed and take the same image repeatedly, but the spatial extent of
that image is determined by the height of the camera, its azimuth, and in part, the system that it is
targeting—cameras mounted on towers above forests tend to have greater spatial coverage than do
cameras that are focused on prairies, grasslands, or similar low-stature ecosystems [19]. Extending
coverage would require additional cameras and additional infrastructure at a site. The number of
individual images that an operator can acquire is limited by cost, travel time, safety, terrain, and
weather. We have focused on using derived values from the phenocamr package to estimate rates
and amounts of green-up in this analysis as this is a fairly plug-and-play, off-the-shelf approach with
high-quality output that can be employed by many researchers, even with limited remote sensing
experience. However, additional means of analysis (see PhenoPix package in R [52]) can be used to
analyze images for within scene variance that can increase the utility of these data that may alleviate
some of these concerns.

4.4. Trends, Transition Dates

Transition times agree within +/− 5 days among the sensors we surveyed. We are limited in
some inferences in our dataset, as we do not have earlier canopy imagery either from our UAV or
below-canopy sensors. We also acknowledge that segmented analysis that uses piecewise regression
may inform these results differently than sigmoidal curves, which can also be fit to these data when
the times series include more of the pre-green-up dormant phase. Given the absence of earlier
(e.g., March/April) data, we could not use this approach. Thus, we can only assess when spring
transition stabilizes, rather than estimating true start-of-season dates. We can assume that rather
homogenous nature of the forest canopy observed contributed to this convergence. It is rather likely that
in forests that are more heterogeneous, due to age, disturbance, or species composition, the uncertainty
around this convergence could be inflated.

4.5. Future UAV Applications for High-Resolution Phenology

While spaceborne remote sensing drastically altered how we perceive and quantify the Earth
system, UAVs are continuing this revolution by democratizing remote sensing. As both UAV and
sensor technology decrease in price, and increase in capabilities, the adoption and application of
UAV-based remote sensing will broaden, providing researchers of even modest means powerful remote
sensing tools. We envision daily automated drone data collection that can provide high resolution
imagery, mapping phenology, and structure at both high temporal and spatial resolution. For field
sites with extensive infrastructure (e.g., Long-Term Ecological Research network, National Ecological
Observatory Network, AmeriFlux), UAVs offer unique opportunities to expand the impact of existing
research for a marginal investment of resources.

5. Conclusions

While we conclude that these three near-surface approaches (UAV, ground-based camera,
and PhenoCam) provide similar estimates of the timing of canopy greening, each sensor has distinct
advantages and disadvantages. As many instances in science, question determines instrument choice.
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UAVs provide superior spatial coverage and resolution, but require special training and permitting and
often proprietary software to generate orthoimages. PhenoCams provide high temporal resolution, are
networked to the PhenoCam network, have consistent protocols and open-source analysis pipelines,
and are comparable across multiple environments. They do however require existing site infrastructure
(e.g., internet access, tower mounts). PhenoCams are also stationary which sacrifices spatial coverage
and site heterogeneity, yet the oblique-view of the canopy of PhenoCams largely avoids image
interference from the ground or sky, isolating the canopy for analysis—this is often not the case in arid
systems. Ground-based cameras allow for canopy isolation more completely than the other sensors
surveyed, which gives the user the ability to more readily measures additional structural information
such as canopy gap fraction, rather than just greenness. They are limited by a smaller spatial coverage,
and a higher degree of user attention. Each sensor does, however, provide robust estimates of canopy
phenology with broad utility in ecology and remote sensing studies. All three of the sensors surveyed
complement each other and provide additional information about canopy phenology and, to some
degree, canopy structure. UAVs offer a means to democratize remote sensing for many researchers,
scientists, and practitioners, and provide broad utility to forestry and ecological sciences.

Supplementary Materials: Data Availability and Computer Code and Software—Summary data and analysis
scripts are held in a publically available GitHub repository: https://github.com/atkinsjeff/pace_mapping_
phenology.

Author Contributions: Conceptualization, methodology, formal analysis, J.W.A., A.E.L.S., X.Y.; writing—original
draft preparation, J.W.A.; writing—review and editing, J.W.A., A.E.L.S, X.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the University of Virginia Department of Environmental
Sciences. X. Y. and A.E.L.S were supported by the National Aeronautics and Space Administration (award no.
80NSSC17K0110), National Science Foundation through Division of Atmospheric and Geospace Sciences (award
no. 1837891), Division of Integrative Organismal Systems (award no. 2005574). J.W.A. was supported by the
National Science Foundation, Division of Environmental Biology (award no. 1655095).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Drones 2020, 4, x FOR PEER REVIEW 13 of 16 

Appendix A 

 

Figure A1. Breakpoint analysis showing dates of canopy closure (DOY), detailed in Table 1. 

References 

1. Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, 
phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 
2013, 169, 156–173, doi:10.1016/j.agrformet.2012.09.012. 

2. Migliavacca, M.; Galvagno, M.; Cremonese, E.; Rossini, M.; Meroni, M.; Sonnentag, O.; Cogliati, S.; Manca, 
G.; Diotri, F.; Busetto, L.; et al. Using digital repeat photography and eddy covariance data to model 
grassland phenology and photosynthetic CO2 uptake. Agric. For. Meteorol. 2011, 151, 1325–1337, 
doi:10.1016/j.agrformet.2011.05.012. 

3. Linderholm, H.W. Growing season changes in the last century. Agric. For. Meteorol. 2006, 137, 1–14, 
doi:10.1016/j.agrformet.2006.03.006. 

4. Yang, X.; Mustard, J.F.; Tang, J.; Xu, H. Regional-scale phenology modeling based on meteorological 
records and remote sensing observations. J. Geophys. Res. Biogeosci. 2012, 117, 1–18, 
doi:10.1029/2012JG001977. 

5. Arora, V.K.; Boer, G.J. A parameterization of leaf phenology for the terrestrial ecosystem component of 
climate models. Glob. Chang. Biol. 2005, 11, 39–59, doi:10.1111/j.1365-2486.2004.00890.x. 

6. Richardson, A.D.; Braswell, B.H.; Hollinger, D.Y.; Jenkins, J.P.; Ollinger, S.V. Near-surface remote sensing 
of spatial and temporal variation in canopy phenology. Ecol. Appl. 2009, 19, 1417–1428, doi:10.1890/08-
2022.1. 

7. Ryan, C.M.; Williams, M.; Hill, T.C.; Grace, J.; Woodhouse, I.H. Assessing the phenology of southern 
tropical Africa: A comparison of hemispherical photography, scatterometry, and optical/NIR remote 
sensing. IEEE Trans. Geosci. Remote Sens. 2014, 52, 519–528, doi:10.1109/TGRS.2013.2242081. 

8. Rankine, C.; Sánchez-Azofeifa, G.A.; Guzmán, J.A.; Espirito-Santo, M.M.; Sharp, I. Comparing MODIS and 
near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient 
using optical phenology towers. Environ. Res. Lett. 2017, 12, 105007, doi:10.1088/1748-9326/aa838c. 

9. Klosterman, S.; Richardson, A.D. Observing spring and fall phenology in a deciduous forest with aerial 
drone imagery. Sensors 2017, 17, 2852, doi:10.3390/s17122852. 

10. Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-based multispectral remote sensing for precision 
agriculture: A comparison between different cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–
136, doi:10.1016/j.isprsjprs.2018.09.008. 

11. Yang, X.; Tang, J.; Mustard, J.F. Beyond leaf color: Comparing camera-based phenological metrics with leaf 
biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous 
forest. J. Geophys. Res. Biogeosci. 2014, 119, 181–191, doi:10.1002/2013JG002460. 

12. Lowman, M.; Voirin, B. Drones–our eyes on the environment. Front. Ecol. Environ. 2016, 14, 231–231, 
doi:10.1002/fee.1290. 

Figure A1. Breakpoint analysis showing dates of canopy closure (DOY), detailed in Table 1.

https://github.com/atkinsjeff/pace_mapping_phenology
https://github.com/atkinsjeff/pace_mapping_phenology


Drones 2020, 4, 56 13 of 15

References

1. Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change,
phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol.
2013, 169, 156–173. [CrossRef]

2. Migliavacca, M.; Galvagno, M.; Cremonese, E.; Rossini, M.; Meroni, M.; Sonnentag, O.; Cogliati, S.; Manca, G.;
Diotri, F.; Busetto, L.; et al. Using digital repeat photography and eddy covariance data to model grassland
phenology and photosynthetic CO2 uptake. Agric. For. Meteorol. 2011, 151, 1325–1337. [CrossRef]

3. Linderholm, H.W. Growing season changes in the last century. Agric. For. Meteorol. 2006, 137, 1–14.
[CrossRef]

4. Yang, X.; Mustard, J.F.; Tang, J.; Xu, H. Regional-scale phenology modeling based on meteorological records
and remote sensing observations. J. Geophys. Res. Biogeosci. 2012, 117, 1–18. [CrossRef]

5. Arora, V.K.; Boer, G.J. A parameterization of leaf phenology for the terrestrial ecosystem component of
climate models. Glob. Chang. Biol. 2005, 11, 39–59. [CrossRef]

6. Richardson, A.D.; Braswell, B.H.; Hollinger, D.Y.; Jenkins, J.P.; Ollinger, S.V. Near-surface remote sensing of
spatial and temporal variation in canopy phenology. Ecol. Appl. 2009, 19, 1417–1428. [CrossRef]

7. Ryan, C.M.; Williams, M.; Hill, T.C.; Grace, J.; Woodhouse, I.H. Assessing the phenology of southern tropical
Africa: A comparison of hemispherical photography, scatterometry, and optical/NIR remote sensing. IEEE
Trans. Geosci. Remote Sens. 2014, 52, 519–528. [CrossRef]

8. Rankine, C.; Sánchez-Azofeifa, G.A.; Guzmán, J.A.; Espirito-Santo, M.M.; Sharp, I. Comparing MODIS and
near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient
using optical phenology towers. Environ. Res. Lett. 2017, 12, 105007. [CrossRef]

9. Klosterman, S.; Richardson, A.D. Observing spring and fall phenology in a deciduous forest with aerial
drone imagery. Sensors 2017, 17, 2852. [CrossRef]

10. Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-based multispectral remote sensing for precision
agriculture: A comparison between different cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136.
[CrossRef]

11. Yang, X.; Tang, J.; Mustard, J.F. Beyond leaf color: Comparing camera-based phenological metrics with leaf
biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous
forest. J. Geophys. Res. Biogeosci. 2014, 119, 181–191. [CrossRef]

12. Lowman, M.; Voirin, B. Drones–our eyes on the environment. Front. Ecol. Environ. 2016, 14, 231. [CrossRef]
13. Zhang, J.; Hu, J.; Lian, J.; Fan, Z.; Ouyang, X.; Ye, W. Seeing the forest from drones: Testing the potential of

lightweight drones as a tool for long-term forest monitoring. Biol. Conserv. 2016, 198, 60–69. [CrossRef]
14. Hassan, M.A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; Xiao, Y.; He, Z. A rapid monitoring of

NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant
Sci. 2019, 282, 95–103. [CrossRef] [PubMed]

15. Klosterman, S.; Melaas, E.; Wang, J.A.; Martinez, A.; Frederick, S.; O’Keefe, J.; Orwig, D.A.; Wang, Z.; Sun, Q.;
Schaaf, C.; et al. Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV)
photography. Agric. For. Meteorol. 2018, 248, 397–407. [CrossRef]

16. Berra, E.F.; Gaulton, R.; Barr, S. Assessing spring phenology of a temperate woodland: A multiscale
comparison of ground, unmanned aerial vehicle and Landsat satellite observations. Remote Sens. Environ.
2019, 223, 229–242. [CrossRef]

17. Dandois, J.P.; Ellis, E.C. High spatial resolution three-dimensional mapping of vegetation spectral dynamics
using computer vision. Remote Sens. Environ. 2013, 136, 259–276. [CrossRef]

18. Park, J.Y.; Muller-Landau, H.C.; Lichstein, J.W.; Rifai, S.W.; Dandois, J.P.; Bohlman, S.A. Quantifying leaf
phenology of individual trees and species in a tropical forest using unmanned aerial vehicle (UAV) images.
Remote Sens. 2019, 11, 1534. [CrossRef]

19. Browning, D.M.; Karl, J.W.; Morin, D.; Richardson, A.D.; Tweedie, C.E. Phenocams Bridge the Gap between
Field and Satellite Observations in an Arid Grassland Ecosystem. Remote Sens. 2017, 9, 1071. [CrossRef]

20. Sonnentag, O.; Hufkens, K.; Teshera-Sterne, C.; Young, A.M.; Friedl, M.; Braswell, B.H.; Milliman, T.;
O’Keefe, J.; Richardson, A.D. Digital repeat photography for phenological research in forest ecosystems.
Agric. For. Meteorol. 2012, 152, 159–177. [CrossRef]

http://dx.doi.org/10.1016/j.agrformet.2012.09.012
http://dx.doi.org/10.1016/j.agrformet.2011.05.012
http://dx.doi.org/10.1016/j.agrformet.2006.03.006
http://dx.doi.org/10.1029/2012JG001977
http://dx.doi.org/10.1111/j.1365-2486.2004.00890.x
http://dx.doi.org/10.1890/08-2022.1
http://dx.doi.org/10.1109/TGRS.2013.2242081
http://dx.doi.org/10.1088/1748-9326/aa838c
http://dx.doi.org/10.3390/s17122852
http://dx.doi.org/10.1016/j.isprsjprs.2018.09.008
http://dx.doi.org/10.1002/2013JG002460
http://dx.doi.org/10.1002/fee.1290
http://dx.doi.org/10.1016/j.biocon.2016.03.027
http://dx.doi.org/10.1016/j.plantsci.2018.10.022
http://www.ncbi.nlm.nih.gov/pubmed/31003615
http://dx.doi.org/10.1016/j.agrformet.2017.10.015
http://dx.doi.org/10.1016/j.rse.2019.01.010
http://dx.doi.org/10.1016/j.rse.2013.04.005
http://dx.doi.org/10.3390/rs11131534
http://dx.doi.org/10.3390/rs9101071
http://dx.doi.org/10.1016/j.agrformet.2011.09.009


Drones 2020, 4, 56 14 of 15

21. Toomey, M.; Friedl, M.A.; Frolking, S.; Hufkens, K.; Klosterman, S.; Sonnentag, O.; Baldocchi, D.D.;
Bernacchi, C.J.; Biraud, S.C.; Bohrer, G.; et al. Greenness indices from digital cameras predict the timing and
seasonal dynamics of canopy-scale photosynthesis. Ecol. Appl. 2015, 25, 99–115. [CrossRef] [PubMed]

22. Seyednasrollah, B.; Young, A.M.; Hufkens, K.; Milliman, T.; Friedl, M.A.; Frolking, S.; Richardson, A.D.
Tracking vegetation phenology across diverse biomes using Version 2.0 of the PhenoCam Dataset. Sci. Data
2019, 6, 222. [CrossRef] [PubMed]

23. Chianucci, F.; Cutini, A. Digital hemispherical photography for estimating forest canopy properties: Current
controversies and opportunities. IForest Biogeosci. For. 2012, 5, 290. [CrossRef]

24. Origo, N.; Calders, K.; Nightingale, J.; Disney, M. Influence of levelling technique on the retrieval of canopy
structural parameters from digital hemispherical photography. Agric. For. Meteorol. 2017, 237–238, 143–149.
[CrossRef]

25. Yang, H.; Yang, X.; Heskel, M.; Sun, S.; Tang, J. Seasonal variations of leaf and canopy properties tracked by
ground-based NDVI imagery in a temperate forest. Sci. Rep. 2017, 7, 1267. [CrossRef]

26. Wen, Z.; Wu, S.; Chen, J.; Lu, M. NDVI indicated long-term interannual changes in vegetation activities and
their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Sci. Total
Environ. 2017, 574, 947–959. [CrossRef]

27. Chan, W.-Y.S. The Fate of Biogenic Hydrocarbons within a Forest Canopy: Field Observations and Model
Results. Ph.D. Thesis, University of Virginia, Charlottesville, VA, USA, 2011.

28. O’Halloran, T.L.; Fuentes, J.D.; Collins, D.R.; Cleveland, M.J.; Keene, W.C. Influence of air mass source region
on nanoparticle events and hygroscopicity in central Virginia, U.S. Atmos. Environ. 2009, 43, 3586–3595.
[CrossRef]

29. Hufkens, K.; Basler, D.; Milliman, T.; Melas, E.K.; Richardson, A.D. An integrated phenology modelling
framework in R. Methods in Eco. Evol. 2018, 9, 1276–1285. [CrossRef]

30. Zhang, X.; Jayavelu, S.; Liu, L.; Friedl, M.A.; Henebry, G.M.; Liu, Y.; Schaaf, C.B.; Richardson, A.D.; Gray, J.
Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery. Agric. For.
Meteorol. 2018, 256–257, 137–149. [CrossRef]

31. Canty, A.; Ripley, B. Boot: Bootstrap R (S-Plus) Functions: R Package Version 1.3-25. 2020. Available online:
https://cran.r-project.org/web/packages/boot/index.html (accessed on 2 May 2020).

32. Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge,
UK, 1997; ISBN 978-0-521-57471-6.

33. Bivand, R.; Keitt, T.; Rowlingson, B.; Pebesma, E.; Sumner, M.; Hijmans, R.; Rouault, E.; Warmerdam, F.;
Ooms, J.; Rundel, C. Rgdal: Bindings for the “Geospatial” Data Abstraction Library: R Package Version
1.5—12. 2020. Available online: https://cran.r-project.org/web/packages/rgdal/index.html (accessed on 2 May
2020).

34. Hijmans, R.J.; van Etten, J.; Sumner, M.; Cheng, J.; Baston, D.; Bevan, A.; Bivand, R.; Busetto, L.; Canty, M.;
Forrest, D.; et al. Raster: Geographic Data Analysis and Modeling: R Package Version 3.3-7. 2020. Available
online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 2 May 2020).

35. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2020.

36. Muggeo, V.M.R. Segmented: An R Package to Fit Regression Models with Broken-Line Relationships. R
News 2008, 8, 20–25.

37. Keenan, T.F.; Darby, B.; Felts, E.; Sonnentag, O.; Friedl, M.A.; Hufkesn, K.; O’Keefe, J.; Klosterman, S.;
Munger, J.W.; Toomey, M.; et al. Tracking forest phenology and seasonal physiology using digital repeat
photography: A critical assessment. Ecol. Appl. 2014, 24, 1478–1489. [CrossRef] [PubMed]

38. Filippa, G.; Cremonese, E.; Migliavacca, M.; Galvagno, M.; Sonnentag, O.; Humphreys, E.; Hufkens, K.;
Ryu, Y.; Verfaillie, J.; Morra di Cella, U.; et al. NDVI derived from near-infrared-enabled digital cameras:
Applicability across different plant functional types. Agric. For. Meteorol. 2018, 249, 275–285. [CrossRef]

39. Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.;
Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote
Sens. 2018, 10, 641. [CrossRef]

40. Roth, L.; Aasen, H.; Walter, A.; Liebisch, F. Extracting leaf area index using viewing geometry effects—A new
perspective on high-resolution unmanned aerial system photography. ISPRS J. Photogramm. Remote Sens.
2018, 141, 161–175. [CrossRef]

http://dx.doi.org/10.1890/14-0005.1
http://www.ncbi.nlm.nih.gov/pubmed/26255360
http://dx.doi.org/10.1038/s41597-019-0229-9
http://www.ncbi.nlm.nih.gov/pubmed/31641140
http://dx.doi.org/10.3832/ifor0775-005
http://dx.doi.org/10.1016/j.agrformet.2017.02.004
http://dx.doi.org/10.1038/s41598-017-01260-y
http://dx.doi.org/10.1016/j.scitotenv.2016.09.049
http://dx.doi.org/10.1016/j.atmosenv.2009.03.033
http://dx.doi.org/10.1111/2041-210X.12970
http://dx.doi.org/10.1016/j.agrformet.2018.03.003
https://cran.r-project.org/web/packages/boot/index.html
https://cran.r-project.org/web/packages/rgdal/index.html
https://cran.r-project.org/web/packages/raster/index.html
http://dx.doi.org/10.1890/13-0652.1
http://www.ncbi.nlm.nih.gov/pubmed/29160668
http://dx.doi.org/10.1016/j.agrformet.2017.11.003
http://dx.doi.org/10.3390/rs10040641
http://dx.doi.org/10.1016/j.isprsjprs.2018.04.012


Drones 2020, 4, 56 15 of 15

41. Baena, S.; Moat, J.; Whaley, O.; Boyd, D.S. Identifying species from the air: UAVs and the very high resolution
challenge for plant conservation. PLoS ONE 2017, 12, e0188714. [CrossRef]

42. Parker, G.G.; Harding, D.J.; Berger, M.L. A portable LIDAR system for rapid determination of forest canopy
structure. J. Appl. Ecol. 2004, 41, 755–767. [CrossRef]

43. Morsdorf, F.; Nichol, C.; Malthus, T.; Woodhouse, I.H. Assessing forest structural and physiological
information content of multi-spectral LiDAR waveforms by radiative transfer modelling. Remote Sens.
Environ. 2009, 113, 2152–2163. [CrossRef]

44. Atkins, J.W.; Bohrer, G.; Fahey, R.T.; Hardiman, B.S.; Morin, T.H.; Stovall, A.E.L.; Zimmerman, N.; Gough, C.M.
Quantifying vegetation and canopy structural complexity from terrestrial LiDAR data using the forestr r
package. Methods Ecol. Evol. 2018, 9, 2057–2066. [CrossRef]

45. Béland, M.; Baldocchi, D.D.; Widlowski, J.-L.; Fournier, R.A.; Verstraete, M.M. On seeing the wood from the
leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR. Agric.
For. Meteorol. 2014, 184, 82–97. [CrossRef]

46. Bouriaud, O.; Soudani, K.; Bréda, N. Leaf area index from litter collection: Impact of specific leaf area
variability within a beech stand. Can. J. Remote Sens. 2003, 29, 371–380. [CrossRef]

47. Tang, H.; Brolly, M.; Zhao, F.; Strahler, A.H.; Schaaf, C.L.; Ganguly, S.; Zhang, G.; Dubayah, R. Deriving and
validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in
Sierra National Forest, CA. Remote Sens. Environ. 2014, 143, 131–141. [CrossRef]

48. Beer, A. Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann. Phys. 1852, 162, 78–88.
[CrossRef]

49. Lambert, J.H. Photometria Sive De Mensura Et Gradibus Luminis, Colorum Et Umbrae; Klett: Augsberg, Germany,
1760.

50. Gaulton, R.; Malthus, T.J. LiDAR mapping of canopy gaps in continuous cover forests: A comparison of
canopy height model and point cloud based techniques. Int. J. Remote Sens. 2010, 31, 1193–1211. [CrossRef]

51. Krishna Moorthy, S.M.; Calders, K.; Vicari, M.B.; Verbeeck, H. Improved Supervised Learning-Based
Approach for Leaf and Wood Classification From LiDAR Point Clouds of Forests. IEEE Trans. Geosci. Remote
Sens. 2020, 58, 3057–3070. [CrossRef]

52. Filippa, G.; Cremonese, E.; Migliavacca, M.; Galvagno, M.; Folker, M.; Richardson, A.D.; Tomelleri, E.
Phenopix: Process Digital Images of a Vegetation Cover. R Package Version 2.4.2. 2020. Available online:
https://cran.r-project.org/web/packages/phenopix/index.html (accessed on 15 May 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0188714
http://dx.doi.org/10.1111/j.0021-8901.2004.00925.x
http://dx.doi.org/10.1016/j.rse.2009.05.019
http://dx.doi.org/10.1111/2041-210X.13061
http://dx.doi.org/10.1016/j.agrformet.2013.09.005
http://dx.doi.org/10.5589/m03-010
http://dx.doi.org/10.1016/j.rse.2013.12.007
http://dx.doi.org/10.1002/andp.18521620505
http://dx.doi.org/10.1080/01431160903380565
http://dx.doi.org/10.1109/TGRS.2019.2947198
https://cran.r-project.org/web/packages/phenopix/index.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Site Description 
	Above-Canopy, UAV-Based Measurements 
	Below-Canopy Measurements 
	Tower-Based Measurements 
	Satellite-Based NDVI 
	Statistical Analysis 

	Results 
	Above- and Below-Canopy Comparisons 
	Estimating Canopy Closure 

	Discussion 
	Scaling Above- and Below-Canopy Imagery 
	Temporal Resolution 
	Spatial Resolution 
	Trends, Transition Dates 
	Future UAV Applications for High-Resolution Phenology 

	Conclusions 
	
	References

